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Abstract

How will local violent conflict patterns in sub-Saharan Africa evolve until the middle of the 21st century? Africa is
recognized as a particularly vulnerable continent to environmental and climate change since a large portion of its
population is poor and reliant on rain-fed agriculture. We use a climate-sensitive approach to model sub-Saharan African
violence in the past (geolocated to the nearest settlements) and then forecast future violence using sociopolitical factors such
as population size and political rights (governance), coupled with temperature anomalies. Our baseline model is calibrated
using 1� gridded monthly data from 1980 to 2012 at a finer spatio-temporal resolution than existing conflict forecasts. We
present multiple forecasts of violence under alternative climate change scenarios (optimistic and current global trajectories),
of political rights scenarios (improvement and decline), and population projections (low and high fertility). We evaluate
alternate shared socio-economic pathways (SSPs) by plotting violence forecasts over time and by detailed mapping
of recent and future levels of violence by decade. The forecasts indicate that a growing population and rising temperatures
will lead to higher levels of violence in sub-Saharan Africa if political rights do not improve. If political rights continue
to improve at the same rate as observed over the last three decades, there is reason for optimism that overall levels of
violence will hold steady or even decline in Africa, in spite of projected population increases and rising temperatures.
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Introduction

How will the local patterns of violent conflict in sub-
Saharan Africa change through the middle of the 21st
century? Africa is recognized as a particularly vulnerable
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continent to environmental and climate change since a
large portion of its population is poor and is reliant on
rain-fed agriculture. Our research uses a climate-sensitive
approach to model sub-Saharan African violence in the
past and then forecasts violence trends using key expla-
natory variables that have been shown to influence con-
flict. Forecasting the future is an exercise fraught with
uncertainty but valuable when used as a tool to explore
the outcomes of different, plausible, future political,
social and climate scenarios. There is a growing literature
on scenario development in the context of environmen-
tal decision making (Mahmoud et al., 2009; Steinitz
et al., 2003) and climate change (O’Neill et al., 2014),
and we adopt this general approach to explore shared
socio-economic pathways (SSPs) for violent conflict in
sub-Saharan Africa. In particular, we consider future
scenarios that vary fertility assumptions, governance
trends and climate projections.

Conflict forecasting in the study of
environmental change and conflict

Predictions are increasingly used in conflict research and
are based on two general motivations. One approach uses
predictions (either in- or out-of-sample validation) to
assess the influences of independent variables upon an
outcome of interest (Ward, Greenhill & Bakke, 2010;
O’Loughlin, Linke & Witmer, 2014; O’Loughlin et al.,
2012; Wischnath & Buhaug, 2014). Another uses mod-
eling and simulation techniques to forecast observed
trends into the future. Interest in this second kind of
analysis has been growing in recent years (Hegre et al.,
2013, 2016, 2017; Ward et al., 2013; Blair, Blattman &
Hartman, 2017; Beger, Dorff & Ward, 2014; O’Brien,
2010; Schneider, Gleditsch & Carey, 2011; Schrodt,
Yonamine & Bagozzi, 2013). We are primarily moti-
vated by this second type of forecasting, though initial
steps in our research rely on model validation using
observed data for recent years.

We forecast conflict using multiple future climate
scenarios to address a question of great interest to aca-
demic and policy communities: how do climate variabil-
ity and environmental stress lead to violent conflict? In
doing so, we are contributing to a growing body of lit-
erature published in Science (Hsiang, Burke & Miguel,
2013), Nature (Hsiang, Meng & Cane, 2011), Proceed-
ings of the National Academy of Sciences (Buhaug, 2010;
Burke et al., 2009; O’Loughlin, Linke & Witmer, 2014;
O’Loughlin et al., 2012; Schleussner et al., 2016) and
Global Environmental Change (Böhmelt et al., 2014; Ide
et al., 2014; Linke et al., 2015). Similarly, journals in the

fields of political geography (De Juan, 2015), develop-
ment economics (Maystadt, Calderone & You, 2015),
climate studies (Theisen, Gleditsch & Buhaug, 2013),
and peace research (Koubi et al., 2012) contain valuable
contributions that consider particular social conditions
that enable climatological extreme events to increase
societal conflict. Robust debate continues about the rela-
tive importance of climate factors on conflict with
Buhaug et al. (2014) arguing that Hsiang, Burke &
Miguel (2013) overreach in their conclusion that devia-
tions from normal temperatures increase the risk of con-
flict across multiple temporal and spatial scales.

Our contribution to the climate–conflict body of
research therefore moves beyond the study of only the
past and present. To that end, we consider two questions
in the context of the climate–conflict literature. First,
what will future patterns of conflict look like? Second,
what factors are driving those future patterns? None of
the research cited above includes substantial engagement
with projected climate scenarios though generalized
statements have been made. Hsiang, Burke & Miguel
(2013: 1235367) argue, for example, ‘because locations
throughout the inhabited world are expected to warm
two to four standard deviations by 2050, amplified rates
of human conflict could represent a large and critical
impact of anthropogenic climate change’. But where
would we observe such a spike in violence and under
what circumstances? Answering these questions is a logi-
cal extension of existing research and is a key goal in this
study. We quantify expectations about violent conflict
patterns in geographically disaggregated predictions for
sub-Saharan Africa until 2065.

In modeling and forecasting violence across all of sub-
Saharan Africa at a 1� (degree) grid resolution, we expli-
citly consider the effects of temperature variability, while
controlling for temporal reporting bias in the coding of
our violent event data. Additionally, we account for a
number of key social and political variables that have
known associations with violence. The incorporation
of these effects into regression analyses has been debated;
while some encourage a thorough and dedicated effort to
capture the specific geographical contexts and social set-
tings of violence (e.g. Raleigh, Linke & O’Loughlin,
2014), others do not explicitly include these possible
influences in statistical estimations even though data are
available (e.g. Hsiang, Burke & Miguel, 2013). By
including these sociopolitical factors with temperature
variability, we are able to evaluate the relative contribu-
tion of each.

In this article, we consider especially the role of polit-
ical settings within which conflicts emerge. There is
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strong evidence that poor governance within countries –
for example, institutions that are discriminatory or exclu-
sionist against certain groups – contributes to the risk of
coup attempts, secessionist movements, and scattered
terrorist attacks. With this understanding, testing the
relationship between rising temperatures and violence
should be only one piece of a larger puzzle; identifying
if, when, and where temperature fluctuations might lead
to conflict in different settings is the key aim. Instead of
making a single forecast of conflict into the future based
on specific temperature estimates, we extend such an
exploration by adding alternative scenarios for social
indicators like political regime type. We combine these
social indicators following the shared socio-economic
pathways (SSPs) concept (Absar & Preston, 2015;
O’Neill et al., 2014). By changing the values of the
model inputs for the forecasts, we can conceptually
‘experiment’ with the effects of social conditions on con-
flict risk as a result of the projected changes in global and
local temperatures that are expected according to the
Intergovernmental Panel on Climate Change (Stocker
et al., 2013). In this way, our research directly addresses
the question of what underlies the predicted geographical
and temporal patterns.

Our theoretical starting point is that the local setting
of environmental stress matters for the ability of popula-
tions to adapt. We quantify different social settings, or
contexts, using projected political regime type and
demographic indicators. This research represents a logi-
cal extension of prior climate change–conflict scholar-
ship, including Burke et al. (2009) who report a null
effect for the level of democracy on the risk of violence.
By contrast, our results below indicate that societies and
governments can effectively intervene in the face of envi-
ronmental stress to mitigate conflict risk.

The quality of governance in sub-Saharan Africa, a
key variable of interest in this study, is generally poor.
Institutions are only partially representative and are fully
autocratic in some cases, with perennially curtailed indi-
vidual political and economic liberties for citizens. There
are important implications of these governance restric-
tions for the resilience and adaptive capacity of commu-
nities in the face of climate change. For this reason,
political regime type is a centrally important input vari-
able for our five shared socio-economic pathways (SSPs),
detailed below. An environmental disaster, a devastating
flood for example, can cause crops to fail, encourage
urgent migration into already overpopulated areas, and
decimate a national or regional economy. In a case where
extreme temperatures affect crop production in only
some regions of a country, repressive and autocratic

regimes will be unlikely to respond adequately to the
needs of affected segments of the population. This is
especially true in cases where governments actively dis-
criminate against opposition groups, often determined
by ethnic affiliation, a known possibility in the cliente-
listic and patronage regimes that dominate our study area
(Clapham, 1982; Schleussner et al., 2016). The role of
governance in ameliorating or worsening resource con-
flicts has been highlighted since Homer-Dixon’s (1999)
book on environmental security.

The premise of our study is that social institutions in a
country represent moderating influences that define two
pathways toward potential outcomes, one violent and
the other comparatively peaceful. Where governments
fail to serve the interests of the majority of citizens, social
safety nets do not ease the burden of shocks to national
political and economic life. Furthermore, in the private
and informal arenas of social life, the viability of eco-
nomic activities and the possibilities for political expres-
sions of grievances are limited, resulting in elevated risks
of experiencing conflict (Cederman, Gleditsch &
Buhaug, 2013). In contrast to the conflict-prone impacts
of ineffective or discriminatory governance, countries
with representative and inclusive regimes are likely to
have characteristics that enable them to fare compara-
tively well under adverse environmental, climatological
or economic conditions. There may be insurance or gov-
ernment aid for losses incurred by both farmers and
pastoralists, for example, and this would help to sustain
a household’s livelihood. As a result, it is not necessary
for those affected to turn to illegal or risky activities to
obtain essential goods. Furthermore, good governance
over the longer term can create more resilient commu-
nities, reducing the need for government assistance dur-
ing times of environmental stress.

Our theoretical lens incorporates the possibility for
climate and weather variability adaptation, which Adger
(2006) defines as a key tool for reducing vulnerability.
Dell, Jones & Olken (2014) consider social science
investigations of climate change effects to be ‘damage
function’ studies where adaptation to environmental
stress can occur over both short-term (e.g. a farmer grow-
ing a different crop) and long-term (e.g. labor and capital
migration) periods. ‘Government institutions and policy,
including policies around public goods, innovation, and
market integration, may also play important roles in the
degree and nature of adaptive responses’ (Dell, Jones &
Olken, 2014: 772). We assume that adaptation to
adverse conditions will depend on the institutional con-
texts present in an area. How effectively particular soci-
eties adapt to climate change is, of course, uncertain.

Witmer et al. 3



Burke, Hsiang & Miguel (2015: 608) suggest that in
East Africa between 1990 and 2009, adaptation may not
have taken place, contributing to more violent conflict.
Nevertheless, we believe that it is important to maintain
the possibility for adaptation and situate its likelihood
into our definitions of social context below.

Without effective management of agricultural pro-
duction, land access, and the availability of clean water,
we expect rapidly growing populations to exacerbate the
social stress associated with natural resource scarcity. Our
objective is to consider this simple possibility with data
characterizing the political circumstances in which
people compete for resources. An environmentally deter-
ministic position would disregard our sensitivity to
socio-economic context. Parry et al. (2004) stressed that
the number of people at risk of hunger in sub-Saharan
Africa will rise more rapidly than that for people living in
other regions. Provision of food from more productive
regions can fill in some of the production deficits in
sub-Saharan Africa, but consumption patterns tend to
be localized in Africa and accounting for population
change at subnational scales is critically important.

To operationalize the climate–conflict nexus, we
hypothesize that conflict levels will increase along with
rising temperatures if political rights deteriorate and pop-
ulation growth continues to rise. If sub-Saharan Africa’s
political rights improve toward democratic levels and
population growth moderates, conflict levels will not rise
with predicted increased temperatures. We capture these
extreme cases and other possible future scenarios in our
SSPs. Figure 1 presents our expectations for these rela-
tionships. While a single coefficient estimate in our sta-
tistical model could return conflict predictions (right side
of the figure) based on the values for the extreme climatic
conditions (left side), this would be a pathway without
explanation for the observed pattern. Our approach
instead leverages comparisons between scenarios in the
country-level contexts (A and B in the diagram) within
which social stress emerges and we attribute the possible
transmission of temperature extremes into political con-
flict as a function of these alternative sociopolitical con-
texts. An optimistic future scenario of expanding
political rights and moderate population growth is cap-
tured by Context A in the figure. Context B depicts a
more pessimistic scenario where population growth rises
rapidly and political rights worsen.

Climate projections for Africa

Sub-Saharan Africa, particularly the Sahel and the
Greater Horn of Africa, has experienced large variability

in climate on interannual and decadal scales (Lamb &
Peppler, 1992) leading to devastating droughts, floods,
and famine (Washington et al., 2006). The extremely
dry Sahel of the 1970s and 1980s was associated with
cooler sea-surface temperatures in the northern tropical
Atlantic relative to a warmer southern Atlantic, while
southern Africa’s recurrent droughts seem to be associ-
ated with changes in the Indian Ocean, which has
warmed more than 1� Celsius since 1950 (Hoerling,
Hurrell & Eischeid, 2006).

The signals of climate change projected for Africa are
emerging against this background of variability. For the
continent as a whole, the mean temperature has
increased since 1960 (Conway, Mould & Bewket,
2004; Kruger & Shongwe, 2004; Malhi & Wright,
2004), with more extreme hot days and nights and fewer
extreme cold days and nights in southern and western
Africa (New et al., 2006). Based on the reference period
1986–2005, the Intergovernmental Panel on Climate
Change (Stocker et al. 2013) projects the continental
mean warming trend to continue. Generally, wet areas
are likely to get wetter and dry areas drier but some
traditionally dry areas, such as East Africa, are projected
to get wetter. The projected precipitation change for the
coming decades is small compared with the magnitude of
the natural internal variability of mean precipitation in
Africa (Christensen et al., 2007). The sign of the pro-
jected precipitation change in both the near and long-
term future has large uncertainties, with Africa and other
tropical areas having the highest uncertainties in the local
precipitation change (Rowell, 2011); the West African
Sahel is noted for having a large spread in model projec-
tions (Roehrig et al., 2013). Uncertainties in projected
precipitation change are associated with sea surface tem-
perature (SST) changes, atmospheric and land surface
processes, and the terrestrial carbon cycle. For example,
in mid-century projections, warming of the Indian
Ocean is associated with drying in southern Africa due
to the corresponding atmospheric ascent over the ocean
and subsidence over the land (Hoerling et al., 2005).

Figure 1. Schematic representation of the hypothesized rela-
tionship with sociopolitical contexts A and B as moderating/
conditional settings (SSPs) for the effects of extreme climato-
logical shocks
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Historical and future data

To generate our forecasts of future violence, we compile
historical data on factors known to influence the risk of
violent conflict, and then limit these to the most impor-
tant ones (our assessment of variable influences is
explained below) that we can project into the future
(Table I). Our forecasts do not simply extrapolate from
recent data; they use covariates with known influences
on conflict risk and then incorporate their future projec-
tions into our violence forecasts.

Conflict data and media reports
To measure violence, we use an extended version of the
Armed Conflict Location and Event Dataset (ACLED),
which is based primarily on media reports of violence
geolocated to the nearest settlement (Raleigh et al.,
2010). These data code for political violence such as

riots, protests, violence against civilians, and battles
between rebel and government factions with a daily tem-
poral resolution. The published ACLED data begin in
1997, and we have extended them backwards to 1980
using the published codebook and similar procedures.

Since the volume of reported violence is sensitive to the
extent and depth of media coverage, we include media
reports that exclude violence to control for the increasing
volume of reports over time. These nonviolent data are
derived from annual Factiva media reports for each coun-
try. This is an important component of our model since
we need to ensure that we are estimating risk factors for
violence over space and time, and not just capturing a
technologically driven temporal trend due to the availabil-
ity of electronic event data after the mid-1990s. We proj-
ect these media reports into the future by assuming they
will continue to increase linearly as they have since about
1995 (see Online appendix, Figures A1 and A2).

Table I. Variables used in estimating the baseline models, validation models, and future forecasts

Data resolution

Grid aggregation methodVariable Temporal Spatial Source/notes

Sociodemographic
ACLED violent events 1980–2012d Town ACLED v3 plus Univ. of Colorado

addition
Sum

Nonviolence media reports 1980–2012b Country Factiva Pop-weighted mean
*
Nonviolence media reports

2015–65b Country Extrapolated from Factiva baseline Pop-weighted mean

Population (ln) 1990–2015a 2.5 minute Gridded Population of the World,
version 3 (GPWv3)

Sum, UN WPP adjusted

*
Population (ln)

1950–2065b Country UN World Population Prospects,
2012 revision

GPW spatial distr., UN
WPP urban adjusted

*
Infant mortality rate (1-yr lag)

1950–2065b Country UN World Population Prospects,
2012 revision

Pop-weighted mean

Political rights (1-yr lag) 1972–2012b Country Freedom House Majority pop
*
Political rights (1-yr lag)

2015–65b Country Extrapolated from Freedom House
baseline

Majority pop

Geographic
*
Distance to border (ln)

Constante Country ESRI World Country Boundaries Mean 10 km subgrid

*
Capital city grid cell

Constante, f City ESRI World Cities Binary

Climate
Precipitation (SPI6) 1949–2012c 0.5� Climate Research Unit Mean of ½ degree data
Temperature (TI6) 1949–2012c 0.5� Climate Research Unit Mean of ½ degree data
Temperature (TI6) 1980–2010c 0.5� Six historical simulations forced to

sea surface temperature
Mean of ½ degree data

*
Temperature (TI6)

2006–65c 0.5� RCP 2.6, 4.5, 8.5 future coupled
simulations

Mean of ½ degree data

a Five-year interval, b yearly, c monthly, d daily. e Borders and capital city change when Eritrea (June 1993) and South Sudan (July 2011)
became independent. f Capital city changes for Cote d’Ivoire (Abidjan to Yamoussoukro, March 1983), Nigeria (Lagos to Abuja, December
1991). * Covariate used to forecast future violence.
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Explanatory variables
Our population metric is derived from the Center for
International Earth Science Information Network
(CIESIN) Gridded Population of the World (GPW),
version 3 dataset (Balk & Yetman, 2013). These
2.5-minute resolution data were aggregated to our grid
cells and adjusted so that the total country populations
matched the United Nations (UN) World Population
Prospects (WPP) 2012 report numbers (United Nations,
2014). The WPP data include consistent historical and
future country-level population estimates with sub-
Saharan Africa population estimates ranging from 2.2,
to 2.7, to 3.2 billion in 2065 according to low, medium,
and high fertility models, respectively. These latest UN
data take into account the upwardly revised fertility rates
for Africa (Gerland et al., 2014). By standardizing the
spatially disaggregated GPW to the WPP data, we can
use WPP forecasts without introducing any discontinu-
ities into the population figures.

For future population data, we use the GPW spatial
distribution (2.5-minute resolution) to allocate the UN
WPP country-level projections for the low, medium, and
high fertility scenarios. The spatial allocation is not uni-
formly proportional into the future since we modify the
estimate to take into account UN WPP urbanization
projections, thereby assuring that urban areas grow faster
than rural areas and thus receive a greater share of future
population growth. Urban population growth is added
to current urban areas, and rural population totals are
matched to rural grid cells. These fine-resolution alloca-
tions are then aggregated to our 1� unit of analysis.

Socio-economic well-being is important because loca-
tions in poor areas typically have higher levels of vio-
lence. To capture this influence as others have
(Theisen, Holtermann & Buhaug, 2012), we use the
infant mortality rate (IMR) as a proxy for well-being.
In contrast to indices of wealth, IMR is easier to measure
and more reliable; therefore, the UN WPP historical and
future data do not suffer from many missing values
(United Nations, 2014). For future analyses, it may be
possible to use night-time lights as a surrogate for local
wealth estimates as have Weidmann & Schutte (2017),
though the temporal range of the night-time lights data
limits their usefulness.

We also include a measure of governance that cap-
tures the political rights for each country. These political
rights data from Freedom House (7 ¼ least free, 1 ¼
most free) measure the effects of formal political institu-
tions (Freedom House, 2013). Both the IMR and polit-
ical rights variables are lagged one year to mitigate
endogeneity with the outcome measure, conflict events.

To estimate governance in the future, we consider three
scenarios (see SSP definitions below for combination
with other data). In the pessimistic outlook, we assume
that African political rights will decline to the levels of
the 1980s. In the optimistic scenario, political rights for
every country improve (the scores improve towards a
value of 1) by following the linear trend for all of sub-
Saharan Africa, 1980–2012. Our middle-of-the-road
scenario holds political rights constant for each country
(Online appendix Figures A3 and A4).

Since borders are areas that frequently experience
higher levels of conflict as we have shown in our previous
work (O’Loughlin et al., 2012; O’Loughlin, Linke &
Witmer, 2014), we include a distance to border metric
by calculating the mean distance to international borders
for a 10km subgrid, and then aggregate these to our 1� grid.
To further examine geographic effects, we add a binary
variable for the grid cell that contains the capital city of
each country. This factor is especially important for captur-
ing political violence targeting the incumbent regime since
capital cities tend to be the sites of major violent protests
and rioting, and these events form part of the ACLED data.

Climate data
Historical climate data are derived from the 0.5�

monthly Climate Research Unit (CRU) TS3.21 dataset
from the University of East Anglia (Harris et al., 2014).
The CRU data cover land areas only and include the
number of stations used to interpolate each grid value,
which allows the reliability of the values to be deter-
mined objectively. From these data, we calculate tem-
perature and precipitation anomaly indices by
comparing the most recent six months of data with the
prior 30-year climatology for those same six months and
grid locations. Our use of a running 30-year climatology
instead of a fixed climatology allows for the possibility
that societies will adapt to changing conditions. For rain-
fall, this is the Standardized Precipitation Index, SPI6,
normalized using an incomplete gamma distribution
where values near 0 indicate normal precipitation and
–1 indicates that the last six months were one standard
deviation drier than usual (McKee, Doesken & Kleist,
1993). The temperature index, TI6, is calculated in a
similar manner (though using a standard normal distri-
bution) with positive values indicating hotter than usual
temperatures. This normalization process allows us to
directly evaluate the effects of precipitation and tempera-
ture anomalies across grid cells with different climates.

We use climate models in two ways, to validate our
violence model and to project future climate conditions.
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For both the historical and future climate forecasts, we
use simulated climates generated from the Community
Earth System Model (CESM; Hurrell et al., 2013).
Though there are other climate models that could be
used (Burke et al., 2015), CESM uses a wide range of
future emissions possibilities that covers the range of
future climate scenarios, and is well validated for the
present climate. To validate our statistical model of vio-
lence, we estimate it using the simulated historical cli-
mate data generated by running the atmosphere and land
model with monthly mean observed sea surface tempera-
ture (SST). This ensures that large-scale climate pat-
terns from surrounding oceans are used to force the
model, and for regions where the modes of SST varia-
bility are important, this reduces climate variability and
variance from historical observations. Land tempera-
tures and the atmospheric hydrologic cycle (including
precipitation) are allowed to evolve freely. The benefits
can clearly be seen in the temperature anomaly figure
where present day (1980–2010) model simulations
closely track observed regional SST anomalies
(Figure 2). Six different simulations are used: they vary
only in an initial round-off level perturbation to the
surface pressure field to set the ‘weather’ states on dif-
ferent trajectories. The resulting climate anomalies are
similar, and the spread relates to the remaining
unforced internal variability in the model.

We also run future projections with the CESM.
Future simulations are conducted with the simulated
atmosphere model coupled to a dynamic ocean model.
Simulations use several different anthropogenic emis-
sions scenarios or Representative Concentration Path-
ways (RCPs) that specify the climate forcings, in

particular, CO2 levels (Van Vuuren et al., 2011). In this
article, we use a range of scenarios from a ‘high’ or base-
line emissions case with 8.5 Wm–2 of radiative forcing by
2100 (RCP8.5), a ‘moderate’ case assuming 4.5 Wm–2

of forcing (RCP4.5), and a ‘low’ emissions case of 2.6
Wm–2 forcing (RCP2.6). The scenarios are based on
integrated assessment models that include assumptions
about population projections, technology improve-
ments, and possible limits on emissions of greenhouse
gases due to national policies. RCP8.5 features a ‘weal-
thier’ world with higher population growth than the
other scenarios, but all three are deemed plausible
(Stocker et al., 2013).

Future climate simulations use the fully coupled ver-
sion of CESM with the three different scenarios
(RCP8.5, RCP4.5, and RCP2.6). We extract monthly
mean physical climate statistics for the study area from
the model outputs and use it as a ‘synthetic’ set of climate
data to calculate future precipitation and temperature
anomalies for input to the statistical models. As with the
historical fixed SST scenarios, multiple simulations with
small perturbations between them are used to sample the
possible internal variability in the model for each sce-
nario. To maintain internal consistency, future precipi-
tation and temperature anomalies are calculated against a
rolling 30-year climatology from a corresponding
coupled historical simulation, 1949–2005 (Figure 2).
This coupled simulation is forced by greenhouse gases
and observed natural forcing such as volcanic eruptions.
It will not reproduce the exact timing of internal modes
of variability (such as the El Niño–Southern Oscillation)
as in the uncoupled simulations with fixed sea surface
temperatures.

Baseline models

Our spatiotemporal units of analysis are the 2,062 1� x
1� grid cells overlaid on 42 countries of sub-Saharan
Africa for each month (see Figure 5 for their spatial
distribution). The 33 years of data yield 816,552 grid-
month observations used to calibrate our statistical mod-
els. Our approach is to generate estimates for our base-
line models, and then use our projected covariates to
generate future forecasts. We use a Poisson1 multilevel
model with country-level random effects and log link
function of the form:

Figure 2. Sub-Saharan Africa historical temperature anomalies
1949–2012 for CRU data, a coupled simulation, and six
specified sea surface temperature (SST) simulations

1 We also tested alternate functional forms (linear, logit, and negative
binomial) with little change to the coefficients.
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yij * Poissonð�ijÞ

logð�ijÞ ¼ �0c þ �1Xij þ �ij

where �0c are the country-level intercepts, �1 are the
coefficients (fixed effects) for the grid-month predictors
Xij, and �ij captures the remaining unexplained error.
Our motivation for using a multilevel model is to capture
the nested structure of the relationship we investigate,
allowing spatially disaggregated processes among units of
analysis to take place within broader social settings. We
also prefer our random effects specification to fixed effects,
due to the large number of non-conflict observations that
do not contribute to the statistical analysis when using a
fixed effects specification (Beck & Katz, 2001).

Since our models have a large number of observations,
the usual standard errors are underestimated. Robust
clustered standard errors are frequently used to address
this situation, but since they are typically not used with
multilevel models, we empirically calculate the standard
errors from 200 bootstrapped coefficient estimates.
Given the multilevel structure of our data, we employ
a hierarchical resampling approach that reflects the data
generating process as closely as possible (Davison &
Hinkley, 1997). In particular, we resample the observed
data with replacement for the country level first, then
grid cell level, and then monthly level.

Our initial baseline model, Model 1, includes the full
suite of sociodemographic, geographic, and climatic pre-
dictor variables (Table II). Statistical significance from the
bootstrap standard errors indicates that the coefficients for
precipitation anomalies, well-being, and distance to bor-
der do not differ from 0. Model diagnostics for area under
the receiver operator curve (AUC-ROC), the precision-
recall curve (AUC-PR), and the Brier score are calculated
for our count data by truncating predicted values above 1.

We explore the contribution of each variable further
by plotting the predictive power contribution of each
variable as captured by the AUC-ROC against the z
value from the bootstrapped standard error (Figure 3).
This step provides additional information by which to
evaluate the importance of each variable for violent con-
flict. To avoid introducing excess random noise into our
future forecasts, we drop precipitation (SPI6) from
Model 1, and re-estimate the coefficients in a trimmed
version, Model 2 (Table II). Although this model does
not have an explicit precipitation metric, radiative and
sensible heat fluxes are products of temperature and
guide the local precipitation response over land (Muller
& O’Gorman, 2011). Material well-being (IMR) and
distance to border are retained since they contribute to

the overall predictive power of the model (Figure 3). Our
finding for precipitation runs counter to some expecta-
tions in the literature (e.g. Miguel, Satyanath & Sergenti,
2004), but there are several possible explanations for the
alternative conclusions. Miguel, Satyanath & Sergenti
(2004) study civil war at a country level, where a year
must count at least 1,000 deaths in confrontations
between a government and cohesive rebel organization.
Instead, we focus our attention on the kind of low-level
deadly violence that is more common in sub-Saharan
Africa recently. At a local level, populations often migrate
in a time of drought; Miguel, Satyanath & Sergenti
(2004) cannot capture these subnational level reactions
to precipitation variability.

To increase confidence in our modeling decisions, we
estimate a set of alternate models and describe the results
in the Online appendix. We change the measure of vio-
lence by predicting the ACLED subtypes representing
violence against civilians, riots/protests, and battle events
(Table A1). In addition to these subtypes, we replace the
ACLED dataset by testing the model specification using
the Uppsala Conflict Data Program Georeferenced
Event Data (UCDP-GED) data (Croicu & Sundberg,
2015; Sundberg & Melander, 2013). Table A2 shows
results for this model and for two variants that drop the
nonviolence media reports and exchange the political
rights metric for a polity score (Polity IV Project, 2014).

We also estimate models with varying drought repre-
sentations by explicitly combining temperature and pre-
cipitation. Table A3 shows these results for a hot and dry
measure (a simple difference: TI6–SPI6) and also for a
more sophisticated six-month Standardized Precipitation
Evapotranspiration Index (SPEI6) that combines the
precipitation and temperature record with the latitude
for each grid cell. Finally, we present the variants of the
main Table II models that calculate the temperature and
precipitation anomalies using the long-term climatologi-
cal record from 1949 to 2012 instead of the 30-year
rolling climatologies (Table A4). These results in the
Online appendix underline and support our main find-
ings from Table II (full country-level random effects are
reported in Table A5 and Figure A5). The Online
appendix also presents an out-of-sample model valida-
tion (Table A6) and models using the six historical cli-
mate simulations (Table A7).

Violence forecasts for sub-Saharan Africa,
2015–65

To forecast violence, we use coefficients from Model 2
estimated from the full duration of observed data,

8 journal of PEACE RESEARCH



1981–2012. We focus our results on five future scenar-
ios (Absar & Preston, 2015; O’Neill et al., 2014) that
allow population growth, political rights, and climate
projections to vary in line with what we might expect
for each of the shared socio-economic pathways (SSPs).
Explicitly modeling future variation in political rights
within the SSPs is reasonable since democratizing trends
and reversals in political and civil rights are well docu-
mented for sub-Saharan Africa (Lindberg, 2005):

SSP1: ‘Optimistic’ future. This is a best-case scenario
where population growth is low and political rights
improve. Temperature simulations use RCP2.6.

SSP2: ‘Middle-of-the-road’ future. This is a mid-
course scenario with medium population growth
and constant political rights. Temperature simula-
tions use RCP4.5.

SSP3: ‘Pessimistic’ future. This is a worst-case sce-
nario where high population growth is combined
with a decline in political rights. Temperature
simulations use RCP8.5.

SSP4: ‘Inequality’ future. Globally population growth
varies but remains high for poorer areas such as
sub-Saharan Africa. Political rights remain constant
and temperature simulations use RCP4.5.

SSP5: ‘Contrasting growths’ future. Low population
growth and political rights improvements are com-
bined in this scenario of best social outcomes and
worst climate changes (RCP8.5) due to fossil-
fueled development.

To forecast violence for each of the scenarios, we use a
simulation approach to generate 200 futures. For the
fixed effects coefficients, we use the 200 bootstrap coef-
ficients used to generate the standard errors of the esti-
mates. Our bootstrap resampling approach means that
coefficients for some of the country-level random effects
are missing, so we simulate 200 random effect coeffi-
cients and pair them with the bootstrap fixed effects.
Then, for each scenario, we use the specified population
and political rights projections, and use climate outputs

Table II. Poisson random effects multilevel models (MLM-RE), 1980–2012

Model 1 Model 2, no SPI6

Fixed part Estimate SE Estimate SE

Constant –16.628 2.089 ** –16.638 2.205 **
Precipitation (SPI6) 0.028 0.032
Temperature (TI6) 0.108 0.042 * 0.104 0.041 *
Population (ln) 0.820 0.130 ** 0.819 0.140 **
Well-being (IMR lag) 0.382 0.267 0.381 0.282
Political rights (lag) 0.337 0.123 ** 0.337 0.132 *
Capital city grid cell 1.004 0.354 ** 1.003 0.379 **
Distance to border (ln) –0.147 0.118 –0.146 0.113
Nonviolence media trend (ln) 0.379 0.082 ** 0.381 0.082 **
Random part
Country level �2 0.8824 0.8828
Model diagnostics
AUC-ROC 0.8454 0.8454
AUC-PR 0.1582 0.1581
Brier score 0.0379 0.0379

Significance codes: ** p < 0.01, * p < 0.05. �2 is variance. Number of observations (grid-months) ¼ 816,552. Random effect intercepts not
reported for 42 countries. AUC ¼ area under the curve; ROC ¼ receiver operator characteristic; PR ¼ precision-recall. SE ¼ bootstrap
standard errors with 200 hierarchical resamples.

Figure 3. In-sample predictive power plot for Model 1
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from two simulations (same RCP), applying 100 simu-
lated coefficients to each.

Though we simulate the intercept values for the
country-level random effects in the forecasts, the means
for each country remain constant. While this assumption
can be justified in terms of risk factors that are generally
stable over time (e.g. terrain, soil quality, access to stra-
tegic points), it does not capture unobserved country
changes such as infrastructure development and other
policy initiatives.

Figure 4 shows the results for each of the five sce-
narios by plotting total annual forecasted violence in
sub-Saharan Africa. Based on our assumptions, shared
socioeconomic pathways 1–3 show the complete range
for forecast violence, from decline in the optimistic
scenario, to moderate increases for the middle-of-the-
road scenario, to a tripling of violence in the pessimis-
tic case. SSP1 and SSP5 forecast the least amount of
violence and are characterized by improving political
rights and relatively low population growth. This gen-
eral downward pattern coincident with improved polit-
ical rights is a similar result to Hegre et al. (2013), who
find a decreasing trend for intrastate civil war in a
similar scenario.

Our forecasts also identify conditions under which
violence could rise with increasing temperatures and
pessimistic sociopolitical futures. SSP3 and SSP4 fore-
cast a dramatic rise (Figure 4) in conflict though 2065
under scenarios where political rights in sub-Saharan
Africa remain poor. In our formulation, the only dif-
ference between SSP1 and SSP5, and SSP3 and SSP4
are the climate projections. In our model forecasts,
future violence is sensitive to changes in political
rights and governance, and relatively insensitive to
temperature anomalies. This conclusion stands in dra-
matic contrast to some hyperbolic scenarios about
violent social reactions to climate change (White
House, 2015).

The advantage of our comparative modeling strategy
across SSPs is that it considers the capacity of societies
and institutions to manage the stress that can emerge
with temperature increases, including droughts and
increasing variability in water access. The degree to
which people trust in social adaptation and anticipate
progress in political rights through the mechanisms of
representative governance affects their responses, includ-
ing conflict options.

The fine spatial (1� grids) and temporal (monthly)
detail of our data allow us to map our forecasts. The
forecast maps use the estimated (not bootstrap or simu-
lated) model coefficients and the mean temperature

anomalies for two simulated future climates (same RCP)
to forecast violence. Figure 5 maps total violence for the
middle-of-the-road scenario in ten-year periods to mini-
mize interannual variation. As expected, the future spa-
tial distribution reflects recent levels of violence as
predicted by population distributions, distance to bor-
ders, and locations of capital cities. Country-level influ-
ences are also visible (e.g. for Niger), with such responses
driven by a country’s political rights.

To examine the numerical distribution of the decadal
violence in Figure 5, we use a grouped histogram where
each bar tone is associated with a given decade (Figure 6).
Note that the event count bin sizes vary to accommodate
the skewed distributions. The generally increasing vio-
lence forecast with SSP2 (Figure 4) is visible in the his-
togram, with counts declining for grid cells with fewer
than one violent event, and other bar heights generally
rising, especially for the most violent grid-months fore-
cast to experience over 150 events. Indeed, much of the
increase in total violence is being driven by grid cells that
experience high levels of violence. From the 2040s to the
2055s periods, 809 grid cells were forecast to decline in
violence (on average –0.7 events), while the remaining
1,253 locations were forecast to increase in violence (on
average 9.6 events). This suggests that even under a
scenario where overall violence increases, many places
(though generally less populated) are expected to experi-
ence less violence.

To display more clearly the change from recent con-
flict levels to forecasted levels, we map the ratio of vio-
lence in the 2056–65 decade to the period 2003–12
(Figure 7). Blank grid cells indicate no violence was
observed from 2003 to 2012. Increases in violence are
forecast for all scenarios in countries such as Sudan,
Ethiopia, and Angola, driven in part by continued low
political rights and high population growth. For futures
marked by improving political rights (SSP1 and SSP5),
areas of decreasing violence are clearly visible in South
Sudan, Nigeria, and the Ethiopia–Somalia border
region. Even for SSP2, despite an overall increasing trend
in violence (Figure 4), there are large areas where vio-
lence is expected to decrease (northern Mali, South
Sudan, northern Kenya, and Namibia). In the most pes-
simistic scenario, SSP3, almost all areas will experience
an increase in conflict, including relatively peaceful
countries such as Tanzania. An exception for SSP3 is
South Sudan, which is forecast to experience a reduction
in violence. This is a result of the large negative coeffi-
cient on the South Sudan random effect (Table A5 and
Figure A5 in the Online appendix), likely caused by the
low number of observations in the dataset for this young
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country. Comparing SSP3 to SSP1 for West Africa
reveals a dramatically more violent future when political
rights deteriorate. Such dramatic spatial variation is all
too often lost in country-scale analyses.

These SSP-driven forecasts are instructive for compar-
ing plausible alternative futures, but do not allow us to
easily isolate the relative contributions from any one

factor since most scenarios differ in two or more ways.
To isolate the effects of political rights, population, and
temperature anomalies, we use SSP1, the optimistic
future, as a baseline future and modify it in turn for each
of the factors. The three maps in Figure 8 show the
differences when governance deteriorates towards auto-
cracy compared to the improving trend of SSP1, when

Figure 4. Forecast annual violent event counts for all of sub-Saharan Africa through 2065 for each of the defined shared socio-
economic pathways (SSPs)
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population growth is marked by high fertility compared
to the low fertility of SSP1, and when temperatures
increase from the RCP 2.6 of SSP1 to the expected
higher temperatures of RCP 8.5. These maps show stark
differences, with changes in the nature of governance
clearly having the greatest impact on future violence
levels. Isolating these governance factors also helps to
explain the temporal trends (Figure 4) and spatial varia-
tion (Figure 7) in forecast violence between the SSPs,
with changes in political rights driving much of the
projection.

To evaluate the extent to which these differences in
forecasts are meaningful, we use a Bayesian estimation
method to compare the forecast levels of violence for the
same three sets of scenarios shown in Figure 8. Given a
set of two input datasets, their means and standard devia-
tions are used to calculate 100,000 credible parameter-
value combinations using Markov Chain Monte Carlo
(MCMC) simulation (Kruschke, 2013). The resulting

posterior distributions can then be used to evaluate if
the difference in means of the two input datasets are
credibly different, that is, do not overlap with zero. In
our case, each input dataset consists of the 200 forecast
violence simulations (grey lines in Figure 4). To reduce
interannual variation, we calculate the 2056–65 mean
for each forecast.

Figure 9 shows that, compared to the baseline opti-
mistic SSP1 scenario, futures marked by poor govern-
ance or high fertility will have credibly higher levels of
violence, whereas the future with higher temperatures
(RCP 8.5) differs little from a future with less warming
(RCP 2.6). If we wished to forecast violence to 2100, the
temperature effect would likely be more pronounced, as
RCP8.5 projects the latter half of the century to warm
significantly (Stocker et al., 2013). See the Online
appendix Figure A6 for plots that show which years differ
from the baseline SSP1 scenario using this Bayesian tech-
nique and an alternate t test.

Figure 5. Observed and forecast violence for SSP2, middle-of-the-road future
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Conclusions

In this article, we use spatially and temporally disaggre-
gated local violent event data and simulated climatologi-
cal data based on varying Representative Concentration
Pathways (RCPs, as used by Stocker et al., 2013) to
forecast future levels of violence under plausible alterna-
tive social, demographic, and political scenarios. We find
statistically significant relationships between the amount
of violent conflict and political rights, population size,
and rising temperatures. We find no relationship with
precipitation anomalies, but our analysis differs in
important ways, especially in the level of disaggregation,
from earlier work reporting this association. Our model
validation using simulated historical climate data
revealed that the temperature relationship is specific to
the actual observed data compared to the simulated data
that, though they match the overall trend, allow for
localized variation across time and space.

For the forecasts of violence, under pessimistic future
scenarios of unchanging political rights from current

Figure 7. Decadal ratio of 2056–65 forecast to 2003–12 observed violence for each scenario

Figure 6. Histogram of violent event counts for the latest
observed decade and three future decades as forecast by SSP2,
the middle-of-the road scenario
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levels (SSP3 and SSP4), rising temperatures and increas-
ing population exacerbate levels of violence. If political
rights and governance improve (SSP1 and SSP5), then
future levels of conflict are likely to remain stable or even
decline, despite increases in temperatures and popula-
tion. This result should caution against exaggerated
claims of a violent future that are based on inappropriate
data, incorrect geographic specifications, and an under-
appreciation of the key role of good governance in the
dampening of conflict through a fairer distribution of
scarce resources (Homer-Dixon, 1999).

Some research studying the conflict effects of
climate change alludes to rising risks of violence

coincident with and connected to global warming. In
fact, this is a key emphasis where authors assert the
practical importance of their research for the general
public and policy options. Our article has quantified
and formalized the study of these associations with the
best available predictions of temperature and precipita-
tion into the future. As others have done for the study
of democracy and conflict (Hegre et al., 2013), we
extend the study of violent conflict to forecast violence
using plausible future sociopolitical scenarios (SSPs).
As a contribution to the conflict forecasting literature,
to our knowledge, our spatially disaggregated approach
is the first of its kind.

Figure 9. Posterior distributions of the difference in mean forecast violence for the period 2056–65 using SSP1 as the baseline
forecast and comparing against poor governance, high fertility, and higher temperatures
The black bar at the bottom represents the highest density interval (HDI) and shows where 95% of the credible values fall.

Figure 8. Change in forecast violence for the period 2056–65 using SSP1 as the baseline forecast and comparing against poor
governance, high fertility, and higher temperatures

14 journal of PEACE RESEARCH



In terms of policy implications, the results of our
study are sufficiently persuasive to maintain and
strengthen efforts aimed at improving political rights,
political freedom, and good governance. For decision-
makers, policies aimed at improving governance are
likely to be effective in achieving the goal of reduction
in violent conflict even if efforts to reduce greenhouse gas
emissions are tardy or timid. Our results indicate that
one major pathway for human intervention – institu-
tional – can in fact have powerful effects on future levels
of conflict given the expected changes in climatological
and environmental conditions.

Replication data
The Online appendix, dataset, and R replication files for
the empirical analysis in this article are available at http://
www.prio.org/jpr/datasets.
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Victor Magaña Rueda, Linda Mearns, Claudio Guillermo
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